Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Thermodynamic Relationships

First Law of Thermodynamics

Q = \overbrace{\Delta U + W }^{\text{Closed System}} = \Delta E_p + \Delta E_k + \overbrace{ \Delta U + W_\text{flow} }^{\Delta H} + W_\text{shaft}

where

W = \int_{v_1}^{v_2} p \text{d} v = \int_{p_1}^{p_2} v \text{d} p

Q = \int_{s_1}^{s_2} T \text{d} s

W_\text{max} = m \left[ \left( h_1 – h_2 \right) – T_L \left( s_1 – s_2 \right) \right]

Enthalpy

h = f(T,P,\text{phase})

\Delta h_f is Enthalpy of Formation

In general, h = u + p v , and for gasses h = u + zRT

\Delta h = \Delta u + W_\text{flow} = \Delta u \left( p_2 v_2 – p_1 v_1 \right)

For a constant pressure processes, \Delta h = m c_p \Delta T

For constant volumes processes, \Delta u = m c_v \Delta T

Entropy

\Delta s \ge \int_{T_1}^{T_2} \frac{\text{d}q}{T}, \quad \lim_{T \to 0 } s=0

For every real process, \sum \Delta s > 0

du = T ds – p dv

dh = T ds + v dp

For perfect gasses:

\Delta s = c_p \ln \left( \frac{T_2}{T_1} \right) – R \ln \left( \frac{p_2}{p_1} \right)

\Delta s = c_v \ln \left( \frac{T_2}{T_1} \right) + R \ln \left( \frac{v_2}{v_1} \right)

Polytropic Processes

p_1 v_1^2 = p_2 v_2^n

n = 0 constant pressure

n = 1 constant temperature

n = k isentripic

n = \infty constant volume

Isothermal Processes

0 = \Delta u = \Delta h

w = q = p_1 v_1 \ln \left( \frac{p_1}{p_2} \right)

\Delta s = \frac{q}{T} = R \ln \left( \frac{p_1}{p_2} \right)

Throttling Processes

\Delta T = q = w = \Delta h = \Delta u = 0

\Delta s = R \ln \left( \frac{p_1}{p_2} \right)